FIRE AND TOXICITY TEST FOR SEATS

J.G. Quintiere

Phase II: US ARMY CCDC project on Seat

Flammability and Toxicity

Supported by

Sean Crowley and Carleen Houston

Objective

The U.S Army: Mitigate fire threat from seat material in a combat vehicle interior space for occupants

Thermal and Toxicity hazard

Pick a test because:

- Adopted by regulators
- International
- Supported by Industry
- Has a clear numerical scale
- Invented especially for an application
- Has the support of national labs
- Gives real engineering data
- □ Has been around a long time

Emmons on agreement among 6 country tests of 12 materials

Troitzch, J., International Plastics Flammability Handbook, 2nd ed., Hanser Publishers, 1990, p. 95.

Tests give conceptual rankings as "minimal, slight, normal, and large".

Test Method Design Process

- Fire threat scenarios for the interior of combat vehicles.
- Fire hazards for the occupants are established.
- Seat fire testing alone and within a mock-up military vehicle.
- Specific properties are identified for measurement
- Based on the safety criteria and engineering design an acceptable set of material properties level is established.

Mock-up Vehicle

Criterion for thermal hazard

- Not acceptable: seat flame would impinge over the entire ceiling.
- Should not ignite the adjacent seat. 300 kW
- Criterion:
 - Should not touch the ceiling. 100 kW

Ignition source

 The ignition source shall not be a threat to the occupants.

• Ignition flame heat flux: 40 kW/m² was chosen.

 Ignition source will be a 15 cm square pan with 90 ml of heptane.

Effect of ignition location on seat fire growth behavior

bottom seat back

front seat base

side seat base

side seat back

Seats to consider

Table 1. Description of seat assemblies

			Seat bottom	Seat back	Total face
			width x	width x	area
Chair no.	Color	Source	length	height	_
			cm	cm	m ²
2	Red	Generic office	51 x 51	48 x 41	0.46
4	Beige —	US ARMY	43 x 38	41 x 56	0.39
		CCDC			
5	Blue	FAA block	46 x 51	46 x 61	0.52
6	Blue —	FAA retarded	46 x 51	46 x 61	0.52
7	Green	US ARMY	46 x 38	30 x 48	0.32
		CCDC			
8	Black	US ARMY	46 x 41	41 x 76	0.50
		CCDC			
		FAA no. 5			
9	Blue	with block	46 x 51	46 x 61	0.52
		removed			

Heat release rate results

Figure 29a. Chair energy release rates

Figure 29b. Without Chair 2

Sufficient set of flammability properties

Table 2. Principle set of flammability parameters.

Parameter	Physical Meaning	Measurement Means		
HRP	$\Delta h_c / L$	Slope of Peak HRR		
Heat Release	Heat of combustion/Heat of gasification	and Flux		
Parameter				
TRP	$\pi_{L_{2,2}}(T, T)$	Inverse slope of		
Thermal	$\sqrt{rac{\pi}{4}}k ho c\left(T_{ig}-T_{o} ight)$	(Time to ignition) ^{-1/2}		
Response	For a given heat flux, TRP ² is directly	and applied Heat Flux		
Parameter	proportional to the time to ignite			
CHF	Proportional to ignition temperature, and is	Lowest Heat Flux for		
Critical Heat Flux	the minimum heat flux needed for ignition	Piloted Ignition		
AEP	Total energy released in burning per area	Integral of energy		
Available Energy		release rate per area		
Parameter				

Source of measuring properties

Table 3. Standard tests for fire properties.

Adoption Year	ASTM* Test Standard	Measurable Properties
1978	E 648	CHF (for lateral flame spread)
1990	E 1321	CHF (for piloted ignition) Flame spread velocity parameter, TRP
1990	E 1354	Δh_c , AEP
2000	E 2058	CHF, TRP, Δh_c , L, HRP, AEP

^{*} ASTM International, West Conshohocken, PA 19428-2959. United States

By Cone Calorimeter

Figure 30a. General specimen holder

Figure 30b. Holder for CHF

Property example, Chair 4

Summary of properties

Table 11. Summary of Chair Properties

Chair	Material	TRP	CHF	Heat of	HRP	AEP
		kW-	kW/m ²	Combustion		MJ/m^2
		$s^{1/2}/m^2$		kJ/g		
2	Office	210	20	25	18.8	92
4	T- beige	198	15	23.4	5.7	85
5	F-block	180	15	20/13*	2.4	55/5*
6	F -FR	192	15	16.4	3.0	21/10*
7	T-green	133	15	14.3	2.4	63/35*
8	T-black	169	15	20	4.5	71
9	F-no block	193	15	21	4.4	55

^{*} values at lower heat flux < 40 kW/m², T=US ARMY CCDC, F=FAA

Pass/Fail Criteria

Does seat ignite?

Ignition heat flux of $\overline{q}_{ig}'' = 40 \text{ kW/m}^2$

Passes If CHF > $Q_{ig}'' = 40 \text{ kW/m}^2$

Does seat ignite after 2 minutes?

$$t_{ig} = \left(\frac{TRP}{\overline{q}''_{ig}}\right)^2$$
 Passes if $t_{ig} > 2$ minutes

Does seat fire allow ignition of neighboring seat?

Passes if energy release rate < 100 kW.

Correlation for Heat Release Rate

$$\dot{Q} = \left(\dot{q}_f'' - CHF\right) \cdot HRP \cdot A_{b,\text{max}} \left(\frac{t_b}{t_p}\right)^{0.55} / 3.5$$

Chair	Peak	CHF	HRP	TRP	AEP	t_{ig}	t_b	$A_{b,\max}$
	Power			$kW-s^{1/2}/m^2$	MJ/m^2	S	S	\mathbf{m}^2
	kW	kW/m ²						
2 generic office	640	20	18.8	210	92	8.8	167	0.46**
4 US ARMY CCDC	100	15	5.7	198	85	8.2	436	0.39
Beige								
5 FAA seat block	10	15	2.4	180	5*, 55	6.7	60	0.52
6 FAA grey, FR	10	15	3.0	192	10, 21	7.9	95	0.52
7 US ARMY CCDC	60	15	2.4	133	35, 63	3.7	417	0.32
Green								
8 US ARMY CCDC	50	15	4.5	169	71	7.6	451	0.50
Black								
9 FAA, 5 no block	85	15	4.4	193	55	6.0	357	0.52

Correlation over Matlab model

Summary of Pass/Fail

Table 13. Summary of Properties and Protocol Test Results

Chair	Exper. Peak Power	Calc. Peak Power Eq. (12)	CHF kW/	HRP	TRP	AEP	FED
	kW	kW	$\frac{\mathbf{K}\mathbf{W}}{\mathbf{m}^2}$		$kW-s^{1/2}/m^2$	MJ/m^2	CO & T
	K VV	K VV	111		K VV -5 /111	1 V1J /111	
2 generic office	640**	415**	20	18.8	210	92	773
4 CCDC Beige	100	89	15	5.7	198	85	9.2
5 FAA seat block	10	27	15	2.4	180	5*, 55	0.058
6 FAA grey, FR	10	37	15	3.0	192	10, 21	0.29
7 CCDC Green	60	40	15	2.4	133	35, 63	16.4
8 CCDC Black	50	94	15	4.5	169	71	21
9 FAA, 5 no block	85	96	15	4.4	193	55	9.2

^{*} burn time based on lower AEP

Fail

^{**} area is double as at peak, burning under/behind (0.92 m²)

Review of Process

- Identify the scenario
- Establish pass/fail criteria
- Determine the scenario heat flux
- Measure material fire properties
- Develop a formula to predict pass/fail from properties and heat flux
- Needs to be a transparent process